### Accepted Manuscript

Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear *RPB1* gene

Ana Crespo, H. Thorsten Lumbsch, Jan-Eric Mattsson, Oscar Blanco, Pradeep K. Divakar, Kristina Articus, Elisabeth Wiklund, Paulina A. Bawingan, Mats Wedin

| PII:           | \$1055-7903(06)00485-4                |
|----------------|---------------------------------------|
| DOI:           | 10.1016/j.ympev.2006.11.029           |
| Reference:     | YMPEV 2423                            |
| To appear in:  | Molecular Phylogenetics and Evolution |
| Received Date: | 14 September 2006                     |
| Revised Date:  | 13 November 2006                      |

Accepted Date: 25 November 2006



Please cite this article as: Crespo, A., Thorsten Lumbsch, H., Mattsson, J-E., Blanco, O., Divakar, P.K., Articus, K., Wiklund, E., Bawingan, P.A., Wedin, M., Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear *RPB1* gene, *Molecular Phylogenetics and Evolution* (2006), doi: 10.1016/j.ympev.2006.11.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear *RPB1* gene

Ana Crespo<sup>1</sup>, H. Thorsten Lumbsch<sup>2\*</sup>, Jan-Eric Mattsson<sup>3</sup>, Oscar Blanco<sup>1</sup>, Pradeep K. Divakar<sup>1</sup>, Kristina Articus<sup>4</sup>, Elisabeth Wiklund<sup>7</sup>, Paulina A. Bawingan<sup>6</sup> and Mats Wedin<sup>5</sup>

<sup>1</sup>Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain

<sup>2</sup>Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
<sup>3</sup>School of Life Sciences, Södertörns högskola, SE-141 89 Huddinge, Sweden
<sup>4</sup>Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
<sup>5</sup>Cryptogamic Botany, Swedish Museum of Natural History, P.O Box 50007, SE-104 05
Stockholm, Sweden
<sup>6</sup>College of Natural Sciences, Saint Louis University, Baguio City, Philippines

<sup>7</sup>Department of Ecology and Environmental Science, Umeå University, Umeå SE-901 87, Sweden

Corresponding author. H. Thorsten Lumbsch, Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA, e-mail: <u>tlumbsch@fieldmuseum.org</u>; phone: 1-312-665-7881; fax: 1-312-665-7158

Received xx September 2006; revised xxx

Running title: Parmeliaceae phylogeny

#### Abstract

Parmeliaceae is the largest family of lichen-forming fungi with more than 2000 species and includes taxa with different growth forms. Morphology was widely employed to distinguish groups within this large, cosmopolitan family. In this study we test these morphology-based groupings using DNA sequence data from three nuclear and one mitochondrial marker from 120 taxa that include 59 genera and represent the morphological and chemical diversity in this lineage. Parmeliaceae is strongly supported as monophyletic and six well-supported main clades can be distinguished within the family. The relationships among them remain unresolved. The clades largely agree with the morphology-based groupings and only the placement of four of the genera studied is rejected by molecular data, while four other genera belong to clades previously unrecognised. The classification of these previously misplaced genera, however, has already been questioned by some authors based on morphological evidence. These results support morphological characters as important for the identification of monophyletic clades within Parmeliaceae.

Keywords: Parmeliaceae; Lecanorales; Ascomycota; Lichens; Phylogeny; Growth forms; Morphological characters.

#### 1. Introduction

Symbiotic associations with photosynthetic active partners, such as algae or cyanobacteria, are among the most widespread life strategies of fungi and are especially common in Ascomycota. Roughly 40% of all Ascomycota form such symbiotic relationships that are called lichens (Kirk et al., 2001). Unlike most non-lichenized fungi, lichens have a diverse vegetative morphology as a consequence of their dual nature. These morphologies primarily reflect the necessity of these symbiotic systems to expose sufficient area with algae or cyanobacteria to light for photosynthesis. Foliose lichens for example have a leaf-like appearance while fruticose lichens increase their surface by dividing the thalli to form branches (Ott and Lumbsch, 2001). The water regime plays another important role in the morphology of lichens. In foliose lichens a water film between the thallus and the contacting substrate can be gradually taken up by the lower surface (Jahns, 1984). Since water uptake occurs over the whole surface of the lichen thallus, deeply divided fruticose lichens have been shown to be extremely effective in use of fog, snow or dew (e.g., Lange et al., 1990); epicortical thin polysaccharide layers interrupted by several structures as pores, fenestrations (Blanco et al. 2004a) or pseudocyphellae also play an important role in water isolation and gas exchange (Hale, 1973). The different morphologies found in lichens have been widely used in taxonomy of these organisms. However, molecular studies demonstrated that growth forms are of no importance at the family and in some cases even generic level (e.g., Stenroos and DePriest, 1998; Wedin et al. 1999; Ekman, 2001; Schmitt et al., 2001; Blanco et al. 2004b). While these phylogenetic studies showed that morphology cannot be schematically applied to circumscribe higher taxa, there is no random pattern of morphological characters in the published phylogenies. Hence, the question remains to what extent growth form characters can be used for the circumscription of monophyletic lineages.

Parmeliaceae is an ideal model to study the question of the importance of growth forms in the taxonomy of these fungi. This family includes morphologically very diverse lichens,

including crustose (e.g., *Protoparmelia*; Henssen, 1995), peltate (e.g., *Omphalodiella*; Henssen, 1991), subcrustose (e.g., *Karoowia*; Hale, 1989), foliose (e.g., *Parmelia*; Elix, 1993), umbilicate (e.g., *Xanthomaculina*; Hale, 1985), fruticose (e.g., *Usnea*; Motyka, 1936) or subfruticose (e.g., *Almbornia*; Esslinger 1981) species and even lichenicolous fungi devoid of any own photosynthetic partner, such as *Phacopsis* and *Nesolechia* (Persoh and Rambold, 2002), were placed here. Parmeliaceae includes approximately 2000 species in some 90 genera and represents the largest family within Lecanorales. The family belongs to the core of the Lecanorales closely related to other large families like the Lecanoraceae and Cladoniaceae (Wedin et al., 2000; Ekman & Tønsberg, 2002; Tehler et al., 2003; Lutzoni et al., 2004). This order is the most speciose within the class Lecanoromycetes which itself includes the bulk of lichen-forming fungi (Eriksson, 2006).

Based on different morphological characters, several genera were segregated at family level from Parmeliaceae. This includes Alectoriaceae, Anziaceae, Cetrariaceae, Corniculariaceae, Everniaceae, Hypogymniaceae, and Usneaceae (Eriksson and Hawksworth, 1998) . While most of these segregates were not used recently, Anziaceae, Hypogymniaceae, and Usneaceae have been accepted by some authors (e.g., Poelt, 1973; Elix and James, 1992; Golubkova, 1994; Wirth and Büdel, 1994; Kärnefelt et al., 1998; Stevens, 1999; McCarthy, 2003), based chiefly on deviating thallus morphology. Further, Alectoriaceae was accepted in several publications (Brodo, 1986; Esslinger, 1989; Eriksson and Hawksworth, 1992; Kärnefelt and Thell, 1992), mainly including taxa with deviating ascospores (Table 1). Based on similarities in micromorphological characters, such as a shared type of ascoma ontogeny and a characteristic structure in the ascoma anatomy, called a cupulate exciple, Henssen and Jahns (1973) accepted the morphologically diverse Parmeliaceae in a wider sense. In phylogenetic analyses based on molecular markers, all the proposed segregated families were shown to be nested within

Parmeliaceae (Mattsson and Wedin, 1999; Wedin et al., 1999; Arup et al. 2006). Hence, currently a wider concept of Parmeliaceae is generally accepted (Eriksson, 2006).

Although molecular data supported a wider concept of Parmeliaceae, it is currently not clear if the different growth forms characterize natural groups within Parmeliaceae. Based on similarities in growth forms or micromorphological similarities (Table 1), different informal groupings have often been distinguished (Krog, 1982; Goward, 1985; Kärnefelt and Thell, 1992; Kärnefelt et al., 1992, 1998; Elix, 1993; Kärnefelt, 1998). These have usually been named after a characteristic genus e.g., parmelioid lichens, which share the typical foliose, dorsiventral growth form and laminal pycnidia and apothecia with the genus *Parmelia*, or cetrarioid lichens, which have erect foliose or subfruticose thalli with marginal apothecia and pycnidia like the genus Cetraria. Whether or not these groups represent monophyletic lineages remains to be investigated. In previous phylogenetic studies, a core group of parmelioid genera was found to be monophyletic (Crespo et al., 2001; Blanco et al., 2006), while Thell et al. (2004) failed to get support for parmelioid lichens as being monophyletic. In the latter study the parmelioid lichens fall into two separate groups, while a core group of cetrarioid lichens was supported as monophyletic. In the present study we addressed the question of phylogenetic patterns of the morphological variation observed in Parmeliaceae using a data set of 120 taxa using four loci, including nuclear and mitochondrial ribosomal DNA and one protein-coding gene RPB1. Our sampling includes 59 genera of Parmeliaceae that represents all growth forms found within the family.

#### 2. Materials and methods

#### 2.1. Taxon sampling

We sampled 116 species of Parmeliaceae, including the major genera and representatives of the morphological and chemical diversity within this group (Table 2). The sample includes 59 of

the 89 genera currently accepted in Parmeliaceae (Eriksson, 2006). Most of the genera not sampled in the present study have earlier been shown to belong to monophyletic groups well covered here (Thell et al., 2002; 2004; Blanco et al., 2006; Divakar et al., 2006). Sequences of three Lecanoraceae species were also included. *Cladonia rangiferina* was used as outgroup as a representative of the closely related Cladoniaceae. GenBank accession numbers and voucher information are given in Table 3.

#### 2.2. Molecular methods

Samples prepared from freshly collected, frozen samples or herbarium specimens were ground with sterile glass pestles. Total genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer's instructions, Dilutions  $(10^{-1} \text{ up to } 10^{-2})$  or undiluted DNA was used for PCR amplifications of the internal transcribed spacer (ITS) and the genes coding for the nuclear LSU rRNA, mitochondrial SSU and the protein coding *RPB1* gene, respectively. Primers for amplification were: a) for the nuclear LSU rDNA: nu-LSU-0155-5' (Döring et al., 2000), nu-LSU-0042-5' (=LR0R) (Vilgalys unpublished, http://www.botany.duke.edu/fungi/mycolab), nu-LSU-1432-3' (=LR7), LR5 and nu-LSU-1125-3' (=LR6) (Vilgalys and Hester, 1990), b) for the nuclear ITS rDNA: ITS1F (Gardes and Bruns, 1993), ITS4 (White et al., 1990) and ITS1-LM (Myllys et al., 1999) and ITS2-KL (Lohtander et al., 1998), c) for the mitochondrial SSU rDNA: mr SSU1 and mrSSU3R (Zoller et al., 1999), and MSU 7 (Zhou et al., 2001), and d) for *RPB1* nu DNA: *gRPB1*-A (Stiller and Hall, 1997) and *fRPB1*-C (Matheny et al., 2002), and RPr2 (Wirtz et al., in prep.). The 25 µL PCR reactions contained 2.5 µL buffer, 2.5 µL dNTP mix, 1 µL of each primer (10 µM), 5 µL BSA, 2 µL Taq, 2 µL genomic DNA extract and 9 µL distilled water. Alternatively, amplifications were performed

in 50 µL volumes containing a reaction mixture of 10 µL genomic DNA, 5 µL of 10X DNA polymerase buffer (Biotools) (containing MgCl<sub>2</sub> 2mM, 10 mM Tris-HCl, pH 8.0, 50 mM KCl, 1 mM EDTA, 0.1% Triton X-100), 1µL dNTP mix, containing 10mM of each base, 2.5 µL of each primer (10 µM), 1.25 µL of DNA polymerase (1U/µL) and 27.5 µL distilled water. PCR on some samples was performed using Amersham Pharmacia Biotech Ready-To-Go Beads. Thermal cycling parameters were: initial denaturation for 3 min at 95°C, followed by 30 cycles of 1 min at 95°C, 1 min at 52°C, 1 min at 73°C, and a final elongation for 7 min at 73°C. Amplifications of some samples were carried out in a Techne Progene thermocycler and performed using the following programs: initial denaturation at 94°C for 5 min, and 30 cycles of: 94°C for 1 min, 54– 60°C (ITS nrDNA), 60°C (LSU nrDNA), 57–58°C (SSU mtrDNA) and 52°C (*RPB1* nrDNA) for 1 min, 72°C for 1.5 min, and a final extension at 72°C for 5 min.

Amplification products were viewed on 1% agarose gels stained with ethidium bromide and subsequently purified using the QIAquick PCR Purification Kit (Qiagen) and DNA Purification Column kit (Biotools) according to the manufacturer's instructions. The cleaned PCR products were sequenced using the same primers used in the amplifications. The ABI Prism<sup>TM</sup> Dye Terminator Cycle Sequencing Ready reaction kit (Applied Biosystems) was used and the following settings were carried out: denaturation for 3 min at 94°C and 25 cycles at: 96°C for 10 sec, 50°C for 5 sec and 60° for 4 min. Sequencing reactions were electrophoresed on a 3730 DNA analyser (Applied Biosystems). Sequence fragments obtained were assembled with SeqMan 4.03 (DNAStar) and manually adjusted.

#### 2.3. Sequence alignments

We employed an alignment procedure that uses a linear Hidden Markov Model (HMM) as implemented in the software SAM (Sequence Alignment and Modelling system; Karplus et al., 1998) for separate alignments of the nu ITS, nu LSU and mt SSU data sets. Regions that were not aligned with statistical confidence using SAM were excluded from the phylogenetic analysis. In the combined data sets missing sequence portions were coded as "?". The alignment of the *RPB1* sequences was performed using Clustal W (Thompson et al., 1994).

#### 2.4. Phylogenetic analyses

The phylogenetic analyses of the alignments included a maximum parsimony (MP) and a Bayesian approach (B/MCMC) (Huelsenbeck et al., 2001; Larget and Simon, 1999). To test for potential conflict, parsimony bootstrap analyses were performed on each individual data set and  $\geq$ 70% bootstrap consensus trees were examined (De Queiroz, 1993; Lutzoni et al., 2004).

Maximum parsimony analyses were performed using the program PAUP\* (Swofford, 2003). Heuristic searches with 200 random taxon addition replicates were conducted with TBR branch swapping and MulTrees option in effect, equally weighted characters and gaps treated as missing data. Bootstrapping (Felsenstein, 1985) was performed based on 2000 replicates with random sequence additions. To assess homoplasy levels, consistency index (CI), and retention index (RI) were calculated from combined parsimony search.

The B/MCMC analysis of the combined data set was performed using the MrBayes 3.1.2 program (Huelsenbeck and Ronquist, 2001). We used the general time reversible model of nucleotide substitution (Rodríguez et al., 1990) including estimation of invariant sites, assuming a discrete gamma distribution with six rate categories and allowing site-specific rates

(GTR+I+G+SS) by using the covarion (Tuffley and Steel, 1998) option of MrBayes. The data set was portioned into six parts (nu ITS, nu LSU, mt SSU, 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> codon positions of *RPB1*). Each partition was allowed to have its own model parameters as proposed by Nylander et al. (2004). No molecular clock was assumed. A run with 4,000,000 generations starting with a random tree and employing 12 simultaneous chains was executed. Every 100<sup>th</sup> tree was saved into a file. The first 200,000 generations (i.e. the first 2000 trees) were deleted as the "burn in" of the chain. We plotted the log-likelihood scores of sample points against generation time using TRACER 1.0 (http://evolve.zoo.ox.ac.uk/software.html?id=tracer) to ensure that stationarity was achieved after the first 200,000 generations by checking whether the log-likelihood values of the sample points reached a stable equilibrium value (Huelsenbeck and Ronquist, 2001). Of the remaining 76,000 trees (38,000 from each of the parallel runs) a majority rule consensus tree with average branch lengths was calculated using the sumt option of MrBayes. Posterior probabilities were obtained for each clade. Only clades that received bootstrap support equal or above 70% under MP (Hillis and Bull, 1993) and posterior probabilities  $\geq 0.95$  were considered as strongly supported. Phylogenetic trees were drawn using the program Treeview (Page, 1996).

#### 3. Results

For this study 242 new sequences were obtained, including 50 nu LSU, 46 mt SSU, 49 nu ITS, and 97 *RPB1* sequences. For four species no mt SSU and 20 species no *RPB1* sequence could be obtained, and in twelve species sequences of different specimens had to be used in the combined analyses. The sequences were aligned with sequences obtained from GenBank as listed in Table 3. The data matrix of 2731 unambiguously aligned nucleotide position characters in the combined

analysis, including 784 of the mt SSU, 845 of the nu LSU, 496 of the nu ITS rDNA, and 606 of the RPB1 rDNA. 412 sites in the mt SSU, 503 in the nu LSU, 336 in the ITS rDNA, and 288 in the *RPB1* data set were constant. Parsimony informative sites were 313 in the mt SSU, 249 in the nu LSU, 109 in the ITS rDNA, and 263 in the RPB1 data set. Ambiguously aligned regions and major insertions, representing spliceosomal and group I introns in the nuclear ribosomal DNA (Bhattacharya et al., 2000; Cubero et al., 2000; Gargas et al., 1995), were excluded from all analyses. 1192 characters were variable in the combined data set. The MP  $\geq$ 70% bootstrap support method for testing data sets for incongruence indicated that phylogenetic signal between the four loci was high overall, with the majority of clades supported by one single-gene analysis not being contradicted in the others (data not shown) and hence a combined analysis was performed. Only very few internal nodes, in which strongly supported clades were contradicted in another analysis, were found: a) in the mt SSU and nu LSU bootstrapping tree Parmelia discordans and P. serrana clustered together, while in the nu ITS P. saxatilis is sister group of P. serrana, and in the nu RPB1 tree P. saxatilis is sister group of P. discordans; b) Melanohalea elegantula in the mt SSU bootstrapping tree grouped with M. exasperata, whereas in the nu LSU and nu RPB1 M. elegantula is sister group of M. aff. exasperata. The combined alignment is available in TreeBASE (http://www.treebase.org/treebase).

Maximum parsimony analysis of the combined data set yielded a consensus tree that did not contradict the Bayesian tree topology. Nine most parsimonious trees were found 8031 steps long (CI=0.22, RI=0.55). 934 positions in the matrix were parsimony-informative.

In the B/MCMC analysis of the combined data set, the likelihood parameters in the sample had the following mean (Variance): LnL = -41918.956 (0.685), base frequencies  $\pi(A)_{\{all\}} = 0.27 (0.0003)$ ,  $\pi(C)_{\{all\}} = 0.223 (0.0003)$ ,  $\pi(G)_{\{all\}} = 0.248 (0.0004)$ ,  $\pi(T)_{\{all\}} = 0.259 (0.0003)$ , rate

matrix  $r(AC)_{\{all\}} = 0.084 \ (0.0002), r(AG)_{\{all\}} = 0.203 \ (0.0006), r(AT)_{\{all\}} = 0.087 \ (0.0002),$   $r(CG)_{\{all\}} = 0.055 \ (0.0002), r(CT)_{\{all\}} = 0.512 \ (0.0008), r(GT)_{\{all\}} = 0.058 \ (0.0002),$  the gamma shape parameter  $alpha_{\{nu \ LSU\}} = 0.376 \ (0.0005), alpha_{\{nu \ TTS\}} = 0.825 \ (0.0005), alpha_{\{mt \ SSU\}} = 0.476 \ (0.0006), alpha_{\{1st \ codon \ RPBI\}} = 0.289 \ (0.0003), alpha_{\{2nd \ codon \ RPBI\}} = 0.135 \ (0.0002),$   $alpha_{\{3rd \ codon \ RPBI\}} = 6.45 \ (0.01),$  the proportion of invariable sites P(invar) mean/all = 0.389 (0.0004), and the proportions of state(off->on)\_{\{all\}} = 0.37 \ (0.007), state(on->off)\_{\{all\}} = 0.371 (0.006).

Since the topologies of the MP and B/MCMC analyses did not show any strongly supported conflicts, only the 50% majority-rule consensus tree of Bayesian tree sampling is shown with those nodes in bold that received strong support (i.e. PP  $\ge$ 0.95 in B/MCMC analysis and MP bootstrap  $\ge$ 70%) in both the MP and Bayesian analyses (Fig. 1).

In the majority-rule consensus tree of combined data set shown in Fig. 1, Parmeliaceae is strongly supported as monophyletic. The crustose *Protoparmelia badia* is sister to all remaining Parmeliaceae. The backbone of the phylogeny of the remaining Parmeliaceae lacks support. However, several clades are strongly supported that partially agree with previously distinguished morphological groupings. The relationships of these monophyletic lineages, however, are not resolved with confidence. The species of the genus *Usnea* are strongly supported as monophyletic. Other taxa like *Evernia* or *Protousnea*, previously classified as usneoid (Table 2), do not cluster with *Usnea* in our analysis. Further, several genera are strongly supported as monophyletic, but without a strongly supported suprageneric relationships; this includes *Bryoria, Menegazzia*, and *Platismatia*. Moreover, the phylogenetic position of eight genera remains unresolved: *Allantoparmelia*, *Anzia, Cornicularia, Evernia, Imshaugia, Oropogon, Pannoparmelia* and *Protousnea*.

Six strongly supported clades were found in our analysis, each of which includes species of different genera. A core group of parmelioid lichens is supported as monophyletic, which includes genera that were incorporated in Blanco et al. (2006), and in addition the lichenicolous Nesolechia oxyspora (=Phacopsis oxyspora), the peltate Omphalodiella patagonica, Cetrelia, a genus previously considered as cetrarioid, and three genera previously considered as parmelioid based on morphological characters: Almbornia, Namakwa, and Xanthomaculina (Table 2). Alectorioid genera, including Alectoria, Pseudephebe and Sulcaria are strongly supported as monophyletic. Everniopsis trulla and Psiloparmelia spp. form a strongly supported sister-group, here called psiloparmelioid. A core group of cetrarioid lichens form a strongly supported clade, including Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Tuckermannopsis, Vulpicida, and Melanelia. The genera Arctoparmelia, Brodoa, Hypogymnia and Pseudevernia form a monophyletic group that corresponds to parts of the hypogymnioid group as circumscribed by Krog (1982). However, Menegazzia, a genus previously considered as hypogymnioid based on morphology, forms an independent monophyletic group with unresolved relationship. Letharia and Lethariella form another well-supported sister-group (letharioid group).

#### 4. Discussion

The four-region data set, including three nuclear (nu LSU, nu ITS, *RPB1*) and one mitochondrial (mt SSU) markers yielded in a more structured and better supported topology of Parmeliaceae than possible in previous studies including fewer markers or a more restricted taxon sampling (e.g., Mattsson and Wedin, 1998, 1999; Wedin et al., 1999; Thell et al., 2004). The nuclear and mitochondrial gene partitions supported the same overall topology. No supported

intragenomic and no substantial intergenomic conflict was found for the major clades. The combined four-region data set provided the most robust support of Parmeliaceae phylogeny overall, although several clades could not be resolved with confidence. This phenomenon suggests that several additional loci and extended taxon sampling will be necessary to further resolve the phylogenetic relationships in this fungal family.

Although the backbone of the Parmeliaceae phylogeny is not resolved with confidence, we can nevertheless draw several conclusions on phylogenetic relationships. The family itself is strongly supported and six well-supported clades can be distinguished, although the relationships of these clades remain unknown. The traditional morphological concept of the family was based on the foliose or fruticose growth form, trebouxioid photobiont, with two single-layered cortices, usually rhizines, lecanorine ascomata, branched paraphyses, hyaline, non-septate ascospores, and pycnidial conidiomata (Kirk et al., 2001). As indicated in Table 1, the present phylogenetic concept includes genera that are not consistent with these criteria (e. g. pigmented, septate or curved ascospores, complex cortex, etc.). One of the most notable results is the position of the crustose genus Protoparmelia, which was placed here based on ascomatal characters (Henssen, 1995; Eriksson, 2006). In spite of the deviating growth form, the present phylogeny supports a close relationship of Protoparmelia with other Parmeliaceae, as was found by Arup et al. (2006). In this study, where a number of potential relatives to Parmeliaceae were included in a combined mt SSU and nu LSU rDNA phylogeny, Protoparmelia or a group consisting of Protoparmelia and Gypsoplacaceae formed the sister-group to Parmeliaceae. Arup et al. (2006) concluded that it is difficult to include Protoparmelia in Parmeliaceae as has often been done recently, without also including the morphologically deviating Gypsoplacaceae. However, although the present knowledge support a very close relationship of Protoparmelia with Parmeliaceae, an increased

taxon sampling is necessary to evaluate what classification of this genus that is best and most informative.

In the following we concentrate on the discussion of the six well-supported clades.

Alectorioid group. This clade includes the genera Alectoria, Pseudephebe and Sulcaria. Alectorioid lichens in a strict sense (Alectoriaceae s. str.) include genera with fruticose growth form and pigmented, simple or septate to muriform ascospores (Eriksson and Hawksworth, 1985; Kärnefelt and Thell, 1992). However, in the present phylogeny genera with brown, septate ascospores (Alectoria and Sulcaria) are grouped with Pseudephebe, which has hyaline, simple ascospores. Therefore, ascospore pigmentation is not useful to circumscribe the alectorioid clade (Table 1). Krog (1982) and Esslinger (1989) had previously argued that using variation in thallus morphology better circumscribes these taxa than classifications that emphasize variation in ascospore pigmention (Eriksson and Hawksworth, 1985; Kärnefelt and Thell, 1992). The genera Bryoria and Oropogon, which are usually placed in the alectorioid group, do not cluster here, but their relationships are not resolved with confidence and hence our data are not sufficient to reject a placement of those taxa into the alectorioid clade. Alectorioid genera in the new concept are characterized by a fruticose, often beard-like pendent or caespitose thallus, Cetraria-type polysaccharides in cell walls (Common, 1991), and periclinally arranged hyphae in a, often multi-layered, cortex. Additional studies are necessary to understand the circumscription of this clade.

*Cetrarioid group*. This group includes *Arctocetraria*, *Cetraria*, *Cetrariella*, *Cetreliopsis*, *Flavocetraria*, *Tuckermannopsis*, and *Vulpicida*, genera that were earlier placed in *Cetraria* based on morphological features (Tables 1, 2), and also includes *Melanelia*. All genera include erect foliose to subfruticose species. *Melanelia* was shown to be polyphyletic previously and the

parmelioid genera *Melanohalea* and *Melanelixia* were segregated from *Melanelia* s. str (Blanco et al., 2004a). The close relationship of *Melanelia* with cetrarioid lichens was indicated by Thell et al. (2002, 2004) and Blanco et al., (2004a, 2006), but in these studies the relationships lacked support. This study strongly supports the placement of *Melanelia* s. str. as a cetrarioid genus, a relationship which is supported by morphology. The taxa in the cetrarioid clade typically have a characteristic combination of characters including marginal, more or less stalked, pycnidia, usually marginal apothecia, and *Cetraria*-type polysaccharides in their cell walls. Although the single characters (marginal pycnidia and apothecia / *Cetraria*-type lichenan) occur outside the clade, none of the taxa outside the cetrarioid clade show this combination of characters. Thell et al. (2002, 2004) have shown that *Tuckernaria, Nephromopsis, Kaernefeltia, Ahtiana, Masonhalea* and *Allocetraria* also belong to this group. *Cetrelia* and *Parmelaria* which previously were considered as cetrarioid based on several morphological traits (e.g., marginal pycnidia and apothecia, sparsely rhizinate lower surface) cluster in the parmelioid group, the latter in agreement with Blanco et al. (2005).

*Hypogymnioid group.* This clade corresponds to the genera *Arctoparmelia, Brodoa, Hypogymnia* and *Pseudevernia.* Together with *Menegazzia* most of these genera were traditionally considered as hypogymnioid based on foliose growth form, lack of rhizines, hollow and loose medulla. Moreover they have been separated at family level by some authors (Poelt, 1973; Elix and James, 1992; Kärnefelt et al., 1992). However, in the present study, the species of *Menegazzia* form a monophyletic group without a resolved relationship. Hence, a placement of this genus in the hypogymnioid clade cannot be rejected with the data at hand. *Arctoparmelia* has not previously been grouped with the hypogymnioid taxa, since it possesses rhizines, which are usually lacking in this group. However, *Arctoparmelia* has a loosely compact medulla (Divakar

and Upreti, 2005), as is the case in other hypogymioid taxa. In fact, the only morphological character that would characterize this clade is the loose or hollow medulla; additional studies are needed in this group.

*Letharioid group.* This clade consists of *Letharia* and *Lethariella* supporting Krog (1976, 1982) who suggested the two genera to be sister-groups based on morphological characters. A close relationship of the two genera to *Usnea* s. lat., that was suggested by Krog (1982) could not be supported, but since there is no well-supported sister-group relationship of *Usnea*, this cannot be rejected either. The letharioid clade includes species with fruticose thallus with a thin, soft and spongy cortex and atranorin as major cortical constituent (Krog, 1976).

*Parmelioid group.* This is the largest clade within Parmeliaceae, representing about 75% of the described species in the family and characterized by foliose thallus, rhizines on the lower surface, laminal apothecia, *Lecanora*- type asci and simple hyaline ascospores (Crespo et al., 2001). However, deviating growth forms are also included as the peltate *Omphalodiella*, subcrustose *Karoowia*, subfruticose *Almbornia* and umbilicate *Xanthomaculina*. It includes numerous genera encompassing species that were traditionally included in *Parmelia (Almbornia, Bulbothrix, Canoparmelia, Everniastrum, Flavoparmelia, Flavopunctelia, Hypotrachyna, Karoowia, Melanelixia, Melanohalea, Myelochroa, Namakwa, Parmelia, Parmelina, Parmelinella, Parmelinopsis, Parmotrema, Pleurosticta, Punctelia, Relicina, Xanthomaculina, Xanthoparmelia), but also Parmeliopsis, the cetrarioid genera <i>Cetrelia* and Parmelaria, the peltate *Omphalodiella*, and the lichenicolous fungus *Nesolechia*. Basically the same seven major clades of parmelioid lichens were found here as shown by Blanco et al. (2006). Polyphyly of some genera, such as *Canoparmelia* and *Xanthoparmelia*, indicates that the current generic

concept is in need of revision. This issue needs to be addressed using extended taxon samplings of these genera.

The placement of several cetrarioid genera in the parmelioid clades demonstrates that the pycnidial or apothecial location cannot be used alone to morphologically distinguish the two clades. However, these two genera (Cetrelia, Parmelaria) belong to broadly lobed cetrarioid taxa. Furthermore, Cetrelia has isolichenan as cell wall polysaccharide (Elix, 1993), which is typical for several groups in parmelioid genera (Blanco et al., 2006), but not present in the cetrarioid clade as circumscribed here. Moreover, Cetrelia was regarded as a "parmelioid Cetraria" by Culberson and Culberson (1968) based on their morphological and anatomical similarities to parmelioid species. Parmelaria, which structural polysaccharide is not yet determined, is morphologically similar to the parmelioid genus Parmotrema, except for the pycnidial and apothecial location (Culberson, 1962). Parmelaria was nested in Parmotrema in previous molecular studies (Blanco et al., 2005). The placement of Parmeliopsis with deviating pycnidia-type and Nesolechia, which is a lichenicolous fungus having a cupulate exciple, among parmelioid lichens has been shown and discussed previously (Crespo et al., 2001; Blanco et al., 2006, Persoh and Rambold, 2002). The peltate Omphalodiella has not been studied using molecular data before. However, already Henssen (1991) noted the similarities in hymenial characters and cortical chemistry of Xanthoparmelia and Neofuscelia. The latter is now treated as a synonym of Xanthoparmelia (Blanco et al., 2004b).

Other genera earlier included in the parmelioid group based on morphology, such as *Allantoparmelia, Arctoparmelia, Melanelia* and *Psiloparmelia,* do not fall into this clade. This is in concordance with recent molecular studies (e.g., Blanco et al., 2004a, b, 2006; Thell et al., 2004). Based on morphological and chemical characters, these genera were already shown to be

aberrant within parmelioid genera. *Allantoparmelia* was placed near hypogymnioid lichens (Elix, 1993), *Arctoparmelia* was shown to have a deviating polysaccharide-type in the cell walls (Elix, 1993), and finally *Psiloparmelia*, which has a different type of epicortical layer (Lumbsch et al., 1992).

*Psiloparmelioid group*. This clade corresponds to the genera *Everniopsis* and *Psiloparmelia*. A close relationship of these two genera has not been proposed previously and morphological characters that would characterize this group are currently not known. However, both genera have a similar thallus surface, contain both usnic acid and atranorin in the cortex, and have bifusiform conidia (Elix, 1993); while *Psiloparmelia* has isolichenan, in *Everniopsis* the cell wall polysaccharide has not been determined. The two genera are widely distributed in higher elevations of the neotropics and also occur in South Africa. Additional morphological and chemical studies are necessary to clarify the relationships of the two genera.

The monophyletic, well-supported clades agree partially with groups with a circumscription based on morphology. 53 of the 59 genera included in this study were placed in one of the six morphological groups (Table 1) previously recognized. Of these, the position of 35 genera could be supported by molecular data while the placement of 12 genera remained unresolved. Only a small percentage of genera were misplaced based on morphology. This includes the genera *Arctoparmelia, Cetrelia, Melanelia, Parmelaria* and *Parmeliopsis*. All genera that were previously considered as being aberrant within their presumed group based on other morphological, chemical or structural (growth forms) characters, suggesting that the classifications previously used were based on oversimplifications. In the case of the genera *Everniopsis* and *Psiloparmelia,* the genera were found to belong to previously unrecognised clades. It should be noted that, although widely different growth forms occur in some clades (e.g.

the parmelioid group), most smaller clades are very well circumscribed morphologically by their growth form and further morphological characters, such as cortical structure (e.g., the alectorioid group). Cell wall polysaccharides have been revealed as important traits to characterize monophyletic groups (e. g. *Xanthoparmelia*–type lichenan within parmelioid genera, cf. Elix, 1993; Blanco et al., 2004b). They have not been studied in detail in most of the groups of Parmeliaceae, however, and much further research is needed to accomplish this.

Our results clearly indicate that morphological characters are useful when characterizing and identifying monophyletic groups within Parmeliaceae, but that the interpretation of the morphological diversity found within this, the most species-rich lineage of fungi, has been too superficial. A more detailed investigation of the distribution and development of important morphological characteristics is clearly needed simultaneously with additional molecular studies, to understand the phylogeny and evolution, and to facilitate the classification of this ecologically important group of lichen-forming fungi.

#### Acknowledgments

This project has been supported by the Spanish Ministry of Education and Science (CGL2004-1848/BOS) to AC and a Juan de la Cierva grant to PKD; a start up fund of the Field Museum to HTL, a start up fund to JEM from Södertörns University College, and grants to MW from the Kempe foundation (JCK-2026), the Royal Academy of Sciences, Magn. Bergvalls Stiftelse, and the Swedish Research Council (NFR B 5101-20005187, VR 620-2001-5756, VR 621-2002-349, VR 621-2003-303). Sequencing was carried out at the Unidad de Genómica (Parque Científico de Madrid) by M. Isabel García, the Pritzker Laboratory of Molecular Systematics at The Field Museum, Chicago, the Natural History Museum, London, and the Umeå

Plant Science Centre. We are indebted to various colleagues for sending fresh material of several species, notably to Johannes Bergsten, Jack Elix, Gintaras Kantvilas, Maria Ines Messuti, and Bengt Oldhammer. Nora Wirtz kindly provided the sequences of *Usnea antarctica* and *U. trachycarpa* for our study. Carin Olofsson, Emma Persbo, David Tingström, Heidi Döring, and Iyabo Osifeso assisted with laboratory work. JEM acknowledges the Museum of Evolution (Uppsala University) and the Natural History Museum in London for providing the possibility to work on this project. AC is indebted to Walter Obermayer (GZU) for providing material and facilities for studying the collection. Ralph Common is thanked for sharing unpublished information on polysaccharide types in Parmeliaceae.

#### References

- Arup, U., Ekman, S., Grube, M., Mattsson, J.-E. Wedin, M. 2006. The sister-group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia, in press.
- Bhattacharya, D., Lutzoni, F., Reeb, V., Simon, D., Nason, J., Fernández, F., 2000. Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol. Biol. Evol. 17, 1971-1984.
- Blanco, O., Crespo, A., Divakar, P.K., Esslinger, T.L., Hawksworth, D.L., Lumbsch, H.T.,
  2004a. *Melanelixia* and *Melanohalea*, two new genera segregated from *Melanelia* (Parmeliaceae) based on molecular and morphological evidence. Mycol. Res. 108, 873-884.
- Blanco, O., Crespo, A., Elix, J.A., Hawksworth, D.L., Lumbsch, H.T., 2004b. A new classification of parmelioid lichens containing *Xanthoparmelia*-type lichenan (Ascomycota: Lecanorales) based on morphological and molecular evidence. Taxon 53, 959-975.

- Blanco, O., Crespo, A., Divakar, P.K., Elix, J.A., Lumbsch, H.T., 2005. Phylogeny of parmotremoid lichens (Acomycotina, Lecanorales). Mycologia 97, 150-159.
- Blanco, O., Crespo, A., Ree, R.H., Lumbsch, H.T., 2006. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol. Phylogen. Evol. 39,52-69.
- Brodo, I.M., 1986. A new species of the lichen genus *Sulcaria* (Ascomycotina, Alectoriaceae) from California. Mycotaxon 27, 113-117.
- Common, R.S., 1991. The distribution and taxonomic significance of lichenan and isolichenan in the Parmeliaceae (lichenized Ascomycotina), as determined by iodine reactions. I. Introduction and methods. II. The genus *Alectoria* and associated taxa. Mycotaxon 41, 67-112.
- Crespo, A., Blanco, O., Hawksworth, D.L., 2001. The potential of mitochondrial DNA for establishing phylogeny and stablising generic concepts in the parmelioid lichens. Taxon 50, 807-819.
- Cubero, O.F., Bridge, P.D., Crespo, A., 2000. Terminal-sequence conservation identifies spliceosomal introns in ascomycete 18S RNA genes. Mol. Biol. Evol. 17, 751-756.
- Culberson, W.L., 1962. The systematic position of *Platysma thomsonii* Stirton. Bryologist 65, 304-307.
- Culberson, W.L., Culberson, C.F., 1968. The lichen genera *Cetrelia* and *Platismatia* (Parmeliaceae). Contrib. U.S. Natl. Herb. 34, 449-558.
- DePriest, P.T., 1999. Development of Mason E. Hale's list of epithets in the parmelioid genera (lichen-forming Ascomycotina): a bibliographic review. Bryologist 102, 442-461.
- De Queiroz, A. 1993. For consensus (sometimes). Syst. Biol. 42, 368–372.

- Divakar, P.K., Upreti, D.K., 2005. Parmelioid lichens in India (A revisionary study). Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 488 pp.
- Divakar, P.K., Crespo, A., Blanco, O., Lumbsch, H.T., 2006. Phylogenetic significance of morphological characters in the tropical *Hypotrachyna* clade of parmelioid lichens (Parmeliaceae, Ascomycota). Mol. Phylogen. Evol. 40, 448-458.
- Döring, H., Clerc, P., Grube, M. Wedin, M., 2000. Mycobiont specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenised ascomycetes. Lichenologist 32, 200-204.
- Ekman, S., 2001. Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycol. Res. 105, 783-797.
- Ekman, S., Tønsberg, T. 2002. Most species of *Lepraria* and *Leproloma* form a monophyletic group closely related to *Stereocaulon*. Mycol. Res. 106, 1262-1276.
- Elix, J.A., 1993. Progress in the generic delimitation of *Parmelia* sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96, 359-383.
- Elix, J.A., James, P.W., 1992. Hypogymniaceae. Flora of Australia 54, 208-246.
- Eriksson, O.E., 2006. Outline of Ascomycota 2006. Myconet 12, 1 82.
- Eriksson, O.E., Hawksworth, D.L., 1985. Outline of the ascomycetes--1985. Syst. Ascomycetum 4, 1-79.
- Eriksson, O.E., Hawksworth, D.L., 1992. Notes on ascomycete systematics Nos 1294-1417. Syst. Ascomycetum 11, 49-82.
- Eriksson, O.E., Hawksworth, D.L., 1998. Outline of the ascomycetes--1998. Syst. Ascomycetum 16, 83-301.

- Esslinger, T.L., 1981. *Almbornia*, a new lichen genus from South Africa. Nord. J. Bot. 1, 125-127.
- Esslinger, T.L., 1989. Systematics of *Oropogon* (Alectoriaceae) in the New World. Syst. Bot. Monogr. 28, 1-111.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
- Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetesapplication to the identification of micorrhizae and rust. Mol. Ecol. 2, 113-118.
- Gargas, A., DePriest, P.T., Grube, M., Tehler, A., 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268, 1492-1495.
- Golubkova, N.S., 1994. Oceanic species of the genus *Usnea* (Usneaceae) in the lichen flora of the Far East (Russia). Bot. Zhurnal 79, 64-69.
- Goward, T., 1985. Ahtiana, a new lichen genus in the Parmeliaceae. Bryologist 88, 367-371.
- Hale, M.E., 1973. Fine structure of the cortex in the lichen family Parmeliaceae viewed with the scanning-electron microscope. Smithsonian Contr. Bot. 10, 1-92.
- Hale, M.E., 1983. The Biology of Lichens. 3rd ed. Edward Arnold, London. 190 pp.
- Hale, M.E., 1985. Xanthomaculina Hale, a new lichen genus in the Parmeliaceae (Ascomycota). Lichenologist 17, 255-265.
- Hale, M.E., 1989. A monograph of the lichen genus *Karoowia* Hale (Ascomycotina: Parmeliaceae). Mycotaxon 35, 177-198.
- Henssen, A., 1991. Omphalodiella patagonica, a new peltate lichen genus and species from South America. Lichenologist 23, 333-342.

- Henssen, A., 1995. Apothecial structure and development in *Protoparmelia badia* (Parmeliaceae s. lat.).
  In: Daniëls, F.J.A., Schulz, M., Peine, J. (eds.): Flechten Follmann. Contributions to lichenology in Honour of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Botanical Institute, University of Cologne, Cologne, pp. 55-62.
- Henssen, A., Jahns, H.M., 1973. Lichenes, Eine Einführung in die Flechtenkunde. Georg Thieme Verlag, Stuttgart.
- Hillis, D.M. and Bull, J.J., 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182-192.
- Huelsenbeck, J.P., Ronquist, F, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755.
- Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310-2314.
- Jahns, H.M., 1984. Morphology, reproduction and water relations--a system of morphogenetic interactions in *Parmelia saxatilis*. Beih. Nova Hedwigia 79, 715-737.
- Kärnefelt, E.I., 1998. Teloschistales and Parmeliaceae a review of the present problems and challenges in lichen systematics at different taxonomic levels. Crypt. Bryol. Lichenol. 19, 93-104.
- Kärnefelt, I., Thell, A., 1992. The evaluation of characters in lichenized families, exemplified with the alectorioid and some parmelioid genera. Pl. Syst. Evol. 180, 181-204.
- Kärnefelt, I., Mattsson, J.-E., Thell, A., 1992. Evolution and phylogeny of cetrarioid lichens. Pl. Syst. Evol. 183, 113-160.
- Kärnefelt, E.I., Emanuelsson, K., Thell, A., 1998. Anatomy and systematics of usneoid genera in the Parmeliaceae. Nova Hedwigia 67, 71-92.

- Karplus, K., Barrett, C., Hughey, R., 1998. Hidden Markov Models for Detecting Remote Protein Homologies. Bioinformatics 14, 846-856.
- Kirk, P.M., Cannon, P.F., David, J.C., Stalpers, J.A., 2001. "Ainsworth & Bisby's Dictionary of the Fungi," 9<sup>th</sup> edn. CAB International, Egham.
- Krog, H., 1976. *Lethariella* and *Protousnea*, two new lichen genera in the Parmeliaceae. Norw. J. Bot. 23, 83-106.
- Krog, H., 1982. Evolutionary trends in foliose and fruticose lichens of the Parmeliaceae. J.Hattori Bot. Lab. 52, 303-311.
- Lange, O.L., Meyer, A., Zellner, H., Ullmann, I., Wessels, D.C.J., 1990. Eight days in the life of a desert lichen: water relations and photosynthesis of *Teloschistes capensis* in the coastal fog zone of the Namib Desert. Madoqua 17, 17-30.
- Larget, B., Simon, D.L., 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750-759.
- Lohtander, K., Myllys, L., Sundin, R., Källersjö, M., Tehler, A., 1998. The species pair concept in the lichen *Dendrographa leucophaea* (Arthoniales): analyses based on ITS sequences. Bryologist 101, 404-411.
- Lumbsch, H.T., Schuster, G., Elix, J.A., Nash, T.H., III., 1992. The epicortical structure of the lichen genus *Psiloparmelia* (Parmeliaceae: Ascomycotina). Mycotaxon 45, 489-494.
- Lutzoni, F., Kauff, F., Cox, C.J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M.,
  Hibbett, D., James, T.Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold,
  A.E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker,
  - R., Sung, G.-H., Lücking, R., Lumbsch, H.T., O'Donnell, K., Binder, M., Diederich, P., Ertz,
  - D., Gueidan, C., Hall, B., Hansen, K., Harris, R.C., Hosaka, K., Lim, Y.W., Liu, Y., Matheny,

- B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J.,
  Sugiyama, J., Yahr, R., Vilgalys, R., 2004. Where are we in assembling the fungal tree of life,
  classifying the fungi, and understanding the evolution of their subcellular traits? Am. J. Bot.
  91, 1446-1480.
- Matheny, P.B., Liu, Y.J., Ammirati, J.F., Hall, B.D., 2002. Using *RPB1* sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales). Am. J. Bot. 89, 688-698.
- Mattsson, J.-E., Wedin, M., 1998. Phylogeny of the Parmeliaceae DNA data versus morphological data. Lichenologist 30, 463-472.
- Mattsson, J.-E., Wedin, M., 1999. A re-assessment of the family Alectoriaceae. Lichenologist 31, 431-440.
- McCarthy, P.M., 2003. Catalogue of Australian Lichens. Australian Biological Resources Study, Canberra.
- Motyka, J., 1936. Lichenum generis *Usnea* studium monographicum. Pars systematica, volumen primum. Privately published, Lublin. iv, 304 pp.
- Myllys, L., Lohtander, K., Källersjö, M., Tehler, A., 1999. Sequence insertions and ITS data provide congruent information on *Roccella canariensis* and *R. tuberculata* (Arthoniales, Euascomycetes) phylogeny. Mol. Phylogen. Evol. 12, 295-309.
- Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., Nieves-Aldrey, J.L., 2004. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53, 47-67.
- Ott, S., Lumbsch, H.T., 2001. Morphology and phylogeny of ascomycete lichens. In: Hock, B., Esser, K. (eds.): The Mycota. IX. Fungal Associations. Springer-Verlag, Berlin, Heidelberg, pp. 189-210.

- Page, R.D.M., 1996. Treeview: an application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12, 357-358.
- Persoh, D., Rambold, G., 2002. *Phacopsis* a lichenicolous genus of the family Parmeliaceae. Mycol. Progr. 1, 43-55.
- Poelt, J., 1973. Classification, In V. Ahmadjian & M.E. Hale (eds.): *The Lichens*. Academic Press, New York, pp. 599-632.
- Rodríguez, F., Oliver, J.F., Martín, A., Medina, J.R., 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142, 485-501.
- Schmitt, I., Messuti, M.I., Feige, G.B., Lumbsch, H.T., 2001. Molecular data support rejection of the generic concept in the Coccotremataceae (Ascomycota). Lichenologist 33, 315-321.
- Stenroos, S.K., DePriest, P.T., 1998. SSU rDNA phylogeny of cladoniiform lichens. Am. J. Bot. 85, 1548-1559.
- Stevens, G.N., 1999. A Revision of the Lichen Family Usneaceae in Australia. Bibl. Lichenol. 72, 1-128.
- Stiller, J.W., Hall, B.D., 1997. The origin of red algae: implications for plastid evolution. Proc. Nat. Acad. Sci., USA 94, 4520-4525.
- Swofford, D.L., 2003. *PAUP\**. Phylogenetic analysis using parsimony (\*and other methods), Sinauer Associates, Sunderland, Mass.
- Tehler, A., Little, D.P., Farris, J.S., 2003. The full-length phylogenetic tree from 1551 ribosomal sequences of chitineous fungi, Fungi. Mycol. Res. 107, 901–916.
- Thell, A., Stenroos, S., Feuerer, T., Kärnefelt, I., Myllys, L., Hyvönen, J. 2002. Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and β-tubulin sequences, morphology, anatomy and secondary chemistry. Mycol. Progress 1, 335-354.

- Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L., Stenroos, S., 2004. Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences. Mycol. Prog. 3, 297-314.
- Thompson, J.D., Higgins, D.G., Gibson, T. J., 1994. Clustal W: improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673--4680.
- Tuffley, C., Steel, M., 1998. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63-91.
- Vilgalys, R., Hester, M., 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J. Bacteriology 172, 4238-4246.
- Wedin, M., Döring, H., Mattsson, J.-E., 1999. A multi-gene study of the phylogenetic relationships of the Parmeliaceae. Mycol. Res. 103, 1185-1192.
- Wedin, M., Döring, H., Ekman, S., 2000. Molecular phylogeny of the lichen families
   Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina).
   Lichenologist 32, 171–187.
- White, T.J., Bruns, T.D., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genesfor phylogenetics. In: M.A., Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds.): PCR protocols. Academic Press, San Diego, pp. 315-322.
- Wirth, R., Büdel, B., 1994. Das Auftreten von Pycnidien bei fruchtenden und sterilen Formen von Usnea florida (L.) Hoffm. (Lecanorales, Usneaceae). Nova Hedwigia 59, 13-20.
- Zhou, S., Stanosz, G.R., 2001. Primers for amplification of mt SSU rDNA, and a phylogenetic study of *Botryosphaeria* and associated anamorphic fungi. Mycol. Res. 105, 1033-1044.

Zoller, S., Scheidegger, C, Sperisen, C., 1999. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511-516.

Acotheritics

Fig. 1. Phylogenetic relationships of Parmeliaceae inferred from a combined analysis of nuclear ITS, LSU, mitochondrial SSU rDNA, and nuclear *RPB1* sequences. 50% majority-rule consensus tree of 38,000 trees sampled using a Bayesian MC/MCMC analysis. Branches with posterior probabilities above 0.94 and also bootstrap support under parsimony equal or above 70% are indicated in bold.

and the second sec

### Table 1

Morphologically defined groups in Parmeliaceae

| Group                          | References                | Main characteristics               |
|--------------------------------|---------------------------|------------------------------------|
| Alectorioid (Alectoriaceae) s. | Poelt (1973), Krog        | Thallus fruticose, cortical layer  |
| lat.                           | (1982), Esslinger (1989)  | composed of periclinally arranged  |
|                                |                           | hyphae, sometimes additional       |
|                                |                           | layers present                     |
| Alectorioid (Alectoriaceae) s. | Eriksson and              | Thallus fruticose, ascospores      |
| str.                           | Hawksworth (1985),        | pigmented, simple or septate to    |
|                                | Kärnefelt and Thell       | muriform                           |
|                                | (1992)                    |                                    |
| Anzioid (Anziaceae)            | Poelt (1973)              | Thallus foliose, asci polyspored,  |
|                                |                           | with curved ascospores             |
| Cetrarioid                     | Goward (1985),            | Thallus foliose to subfruticose,   |
|                                | Kärnefelt et al. (1992)   | pycnidia and apothecia marginal    |
| Hypogymnioid                   | Poelt (1973)              | Thallus foliose, lacking rhizines, |
| (Hypogymniaceae)               |                           | medulla loose, often hollow        |
| Parmelioid                     | Goward (1985), DePriest   | Thallus foliose, pycnidia and      |
|                                | (1999)                    | apothecia laminal                  |
| Usneoid (Usneaceae)            | Hale (1983), Kärnefelt et | Thallus fruticose, cortex para-    |
|                                | al. (1998)                | and/or prosoplectenhchymatous,     |
|                                |                           | never of periclinally arranged     |
|                                |                           | hyphae                             |

#### Table 2

Genera of Parmeliaceae included in this study and their group placement according to morphological characters following Krog (1982), Goward (1985), Kärnefelt and Thell (1992), Kärnefelt et al. (1992, 1998), Elix (1993), and Kärnefelt (1998) and according to molecular markers; \* alectorioid s. lat. group following Poelt (1973), Krog (1982), and Esslinger (1989); genus not placed in group; -- placement in group not supported

| Genus           | Morphological | Growth form   | No of described | Phylogenetic group  |
|-----------------|---------------|---------------|-----------------|---------------------|
|                 | group         |               | species         | placement according |
|                 |               |               | S               | to this study       |
| Alectoria       | alectorioid   | fruticose     | 8               | alectorioid         |
| Allantoparmelia | parmelioid    | foliose       | 3               |                     |
| Almbornia       | parmelioid    | subfruticose  | 2               | parmelioid          |
| Anzia           | anzioid       | foliose       | Ca. 45          | -                   |
| Arctocetraria   | cetrarioid    | subfruticose  | 2               | cetrarioid          |
| Arctoparmelia   | parmelioid    | foliose       | 5               | hypogymnioid        |
| Brodoa          | hypogymnioid  | foliose       | 3               | hypogymnioid        |
| Bryoria         | alectorioid*  | fruticose,    | Ca. 75          |                     |
|                 | )             | caespitose    |                 |                     |
| Bulbothrix      | parmelioid    | foliose       | 52              | parmelioid          |
| Canoparmelia    | parmelioid    | foliose       | 49              | parmelioid          |
| Cetraria        | cetrarioid    | subfruticose  | Ca. 30          | cetrarioid          |
| Cetrariella     | cetrarioid    | erect foliose | 2               | cetrarioid          |
| Cetrelia        | cetrarioid    | foliose       | 18              | parmelioid          |

| Cetreliopsis                                                                       | cetrarioid                                                                                 | foliose                                                                       | 8                                            | cetrarioid                                                             |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------|
| Cornicularia                                                                       | -                                                                                          | caespitose, erect                                                             | 1                                            | -                                                                      |
| Evernia                                                                            | usneoid                                                                                    | subfruticose                                                                  | Ca. 5                                        | -                                                                      |
| Everniastrum                                                                       | parmelioid                                                                                 | foliose                                                                       | 40                                           | parmelioid                                                             |
| Everniopsis                                                                        | usneoid                                                                                    | subfruticose                                                                  | 1                                            | psiloparmelioid                                                        |
| Flavocetraria                                                                      | cetrarioid                                                                                 | erect foliose                                                                 | 2                                            | cetrarioid                                                             |
| Flavoparmelia                                                                      | parmelioid                                                                                 | foliose                                                                       | 35                                           | parmelioid                                                             |
| Flavopunctelia                                                                     | parmelioid                                                                                 | foliose                                                                       | 7                                            | parmelioid                                                             |
| Hypogymnia                                                                         | hypogymnioid                                                                               | foliose                                                                       | Ca. 50                                       | hypogymnioid                                                           |
| Hypotrachyna                                                                       | parmelioid                                                                                 | foliose                                                                       | Ca. 190                                      | parmelioid                                                             |
| Imshaugia                                                                          | -                                                                                          | foliose                                                                       | 7                                            | -                                                                      |
| Karoowia                                                                           | parmelioid                                                                                 | subcrustose                                                                   | 19                                           | parmelioid                                                             |
| Letharia                                                                           |                                                                                            | ALL                                       |                                              |                                                                        |
|                                                                                    | usneoid                                                                                    | fruticose                                                                     | Ca. 5                                        | letharioid                                                             |
| Lethariella                                                                        | usneoid<br>usneoid                                                                         | fruticose<br>fruticose                                                        | Ca. 5<br>11                                  | letharioid<br>letharioid                                               |
| Lethariella<br>Melanelia                                                           | usneoid<br>usneoid<br>parmelioid                                                           | fruticose<br>fruticose<br>foliose                                             | Ca. 5<br>11<br>8                             | letharioid<br>letharioid<br>cetrarioid                                 |
| Lethariella<br>Melanelia<br>Melanelixia                                            | usneoid<br>usneoid<br>parmelioid<br>parmelioid                                             | fruticose<br>fruticose<br>foliose<br>foliose                                  | Ca. 5<br>11<br>8<br>11                       | letharioid<br>letharioid<br>cetrarioid<br>parmelioid                   |
| Lethariella<br>Melanelia<br>Melanelixia<br>Melanohalea                             | usneoid<br>usneoid<br>parmelioid<br>parmelioid<br>parmelioid                               | fruticose<br>fruticose<br>foliose<br>foliose<br>foliose                       | Ca. 5<br>11<br>8<br>11<br>19                 | letharioid<br>letharioid<br>cetrarioid<br>parmelioid<br>parmelioid     |
| Lethariella<br>Melanelia<br>Melanelixia<br>Melanohalea<br>Menegazzia               | usneoid<br>usneoid<br>parmelioid<br>parmelioid<br>parmelioid<br>hypogymnioid               | fruticose<br>fruticose<br>foliose<br>foliose<br>foliose<br>foliose            | Ca. 5<br>11<br>8<br>11<br>19<br>Ca. 60       | letharioid<br>letharioid<br>cetrarioid<br>parmelioid<br>parmelioid     |
| Lethariella<br>Melanelia<br>Melanelixia<br>Melanohalea<br>Menegazzia<br>Myelochroa | usneoid<br>usneoid<br>parmelioid<br>parmelioid<br>parmelioid<br>hypogymnioid<br>parmelioid | fruticose<br>fruticose<br>foliose<br>foliose<br>foliose<br>foliose<br>foliose | Ca. 5<br>11<br>8<br>11<br>19<br>Ca. 60<br>28 | letharioid<br>letharioid<br>cetrarioid<br>parmelioid<br>parmelioid<br> |

| Nesolechia    | -            | lichenicolous | 4       | parmelioid      |
|---------------|--------------|---------------|---------|-----------------|
|               |              | fungi         |         |                 |
| Omphalodiella | -            | peltate       | 1       | parmelioid      |
| Oropogon      | alectorioid  | fruticose     | Ca. 40  |                 |
| Pannoparmelia | parmelioid   | foliose       | 5       | -               |
| Parmelaria    | cetrarioid   | foliose       | 2       | parmelioid      |
| Parmelia      | parmelioid   | foliose       | 45      | parmelioid      |
| Parmelina     | parmelioid   | foliose       | 15      | parmelioid      |
| Parmelinella  | parmelioid   | foliose       | 5       | parmelioid      |
| Parmelinopsis | parmelioid   | foliose       | 25      | parmelioid      |
| Parmeliopsis  | -            | foliose       | Ca. 6   | parmelioid      |
| Parmotrema    | parmelioid   | foliose       | Ca. 350 | parmelioid      |
| Platismatia   | cetrarioid   | foliose       | 10      |                 |
| Pleurosticta  | parmelioid   | foliose       | 3       | parmelioid      |
| Protoparmelia | -            | crustose      | Ca. 20  | -               |
| Protousnea    | usneoid      | fruticose     | 8       | -               |
| Pseudephebe   | alectorioid* | fruticose     | 3       | alectorioid     |
| Pseudevernia  | hypogymnioid | foliose       | 4       | hypogymnioid    |
| Psiloparmelia | parmelioid   | foliose       | 12      | psiloparmelioid |
| Punctelia     | parmelioid   | foliose       | 34      | parmelioid      |
| Relicina      | parmelioid   | foliose       | 54      | parmelioid      |

| Sulcaria        | alectorioid | fruticose     | 4       | alectorioid |
|-----------------|-------------|---------------|---------|-------------|
| Tuckermannopsis | cetrarioid  | erect foliose | 11      | cetrarioid  |
| Usnea           | usneoid     | fruticose     | 500     | -           |
| Vulpicida       | cetrarioid  | erect foliose | 6       | cetrarioid  |
| Xanthomaculina  | parmelioid  | umblicate     | 2       | parmelioid  |
| Xanthoparmelia  | parmelioid  | foliose       | Ca. 800 | parmelioid  |

| Table 3                               |                   | N                                  |                            |                 |            |                   |              |
|---------------------------------------|-------------------|------------------------------------|----------------------------|-----------------|------------|-------------------|--------------|
| Species and specimens of Parme        | Variation Network | New sequences not used             | in previous studies are in | bold.           | N., ITC    | N., I CH          |              |
| <u>Alectoria nieniema</u>             | Voucner           | Locality<br>Swadany Dalama         | Lundquist 9277             |                 | NU115      | NULSU<br>DO022(40 | KPB1         |
| Alectoria nigricans                   | UPS               | Sweden: Dalarna                    | Wadin 7207                 | DQ923620        | DQ9/9996   | DQ923649          | <br>D0022(7( |
| A. nigricans                          | DM                | Norway: ITOIIIs                    | Wedin /297                 |                 |            |                   | DQ923070     |
| A. ochroleuca                         | BM                | Austria: Styria                    | wedin Aug. 1998            | DQ899289        | DQ979997   | DQ899288          |              |
| A. ochroleuca                         | UPS               | Sweden: Härjedalen                 | Wedin 6542                 |                 |            |                   | DO923677     |
| A. sarmentosa                         | UPS               | Sweden: Västerbotten               | Wedin 6350                 | DO899291        | DO979998   | DO899290          | DO923678     |
| Allantoparmelia alpicola              | UPS               | Sweden, Lycksele                   | Wedin 7159                 | DO923621        | DO979999   | DO923650          | DO923679     |
| I I I I I I I I I I I I I I I I I I I |                   | Lappmark                           |                            |                 |            |                   |              |
| Almbornia azaniensis                  | MAF-Lich          | South Africa:                      | Crespo et al. s.n.         | EF025478        | EF042900   | EF042910          | EF092098     |
|                                       | 14269             | Matroosberg                        | F                          |                 | 7          |                   |              |
| A. cafferensis                        | MAE-Lich          | South Africa:                      | Crespo et al. s.n.         | EF025479        | EF042901   | EF042911          |              |
|                                       | 14268             | Matroosberg                        | crespo et al sill          |                 |            |                   |              |
| Anzia colpodes                        | UPS               | USA: Tennessee                     | Lumbsch 4 VI 04            | DO923622        | DO980000   | DO923651          |              |
| This corpoaces                        | 015               | Smoky Mtn National                 |                            |                 | 2,0000     | 20001             |              |
|                                       |                   | Park                               |                            |                 |            |                   |              |
| Arctocetraria andrejewij              | UPS               | USA: Alaska                        | Zhurbenko 1189             | DO923623        | DO980001   | DO923652          | DO923680     |
| Arctonarmelia centrifuga              | MAE-Lich          | Sweden: Umea                       | Friksson s n               | AF351156        | AY581054   | AY578917          | FF092099     |
| ni ciopannena centi ijuga             | 6879              | Sweden: Onlea                      | Linkston s.n.              | 11 551150       | 111501051  | 1110/0917         |              |
| Brodog atrofusca                      | MAE-Lich          | Spain: Zamora                      | Crespo et al s n           | AY643090        | EE042902   | AY607824          | EF092100     |
| Drouoù un ojuseù                      | 6780              | Spuill Zuilloru                    | crespo et un sin           | 111015070       |            | 11100/021         | 110/2100     |
| B. intestiniformis                    | UPS               | Sweden: Härjedalen                 | Wedin 6329                 | DO923624        | DO980002   | DO923653          | DO923681     |
| B. oroarctica                         | UPS               | Norway: Troms                      | Wedin 7293                 | DQ923625        | DQ980002   | DQ923654          | DQ923682     |
| Brvoria capillaris                    | LIPS              | Sweden: Uppland                    | Mattsson 4009              | DQ923626        | AE058032   | DQ923655          | DQ723002     |
| B capillaris                          | UPS               | Sweden: Västerbotten               | Wedin 7624                 |                 |            |                   | DO923683     |
| B. capitalis<br>B fremontii           | LIPS              | Sweden: Västerbotten               | Wedin 6349                 | DO923627        | DO980004   | DO923656          | DQ723003     |
| B. fremontii                          |                   | Sweden: Västerbotten               | Wedin s n                  | DQ723027        | DQ700004   | DQ725050          | DO023684     |
| D. fremoniu                           | 015               | Sweden. Vasterbolten               | www.cums.m.                |                 |            |                   | DQ723004     |
| D. Guardana                           | MART              | Carrier Calman                     | Course at all a m          | 45251150        | EE042002   | EE042012          | EE003101     |
| B. fuscescens                         | MAF-LICH          | Spain: Salamanca                   | Crespo et al. s.n.         | AF351158        | EF042903   | EF042912          | EF092101     |
| Bull othering an oir own our          | 0923<br>CDCC 02   | India: Litteranshal                | Divelser a n               | AV611107        | AV611069   | AV607790          | FE002102     |
| Buidoinrix meizospora                 | 000786            | india: Ottaranchai                 | Divakar s.n.               | A101112/        | A1011008   | A1007780          | EF092102     |
| D. soto obuvor or sis                 | UUU/80<br>MAELiah | Chinas Chu Viana                   | Crease at al. a.m.         |                 | AV611060   | AV607791          | FE002102     |
| B. setschwanensis                     | MAF-Lich          | China: Chu Xiong                   | Crespo et al. s.n.         |                 | A1011009   | A100//81          | EF092103     |
|                                       | 10212             | County                             | T.:. 1.: 15171             | EE005400        | EE0 4200 4 | EE0 40010         |              |
| Canoparmella carneopruinata           | F                 | Costa Rica: Sarchi                 | Lucking 151/1a             | EF025480        | EF042904   | EF042913          |              |
| C. crozalsiana                        | MAF-Lich          | Spain: Cadiz                       | Crespo et al. s.n.         | AY 586594       | AY 5865/1  | AY 584831         | EF092104     |
|                                       | /658              |                                    |                            |                 |            | EE0 4004 4        |              |
| C. pruinata                           | MAF-Lich          | Australia: Tutanning               | E. McCrum s.n.             | EF025481        | EF042905   | EF042914          |              |
|                                       | 14270             | Natural Reserve                    | E1: 01550                  |                 |            |                   |              |
| C. texana                             | MAF-Lich          | Australia: Bermagui                | Elix 31550                 | EF025482        |            |                   |              |
|                                       | 142/3             | T 11 TT. 1 T                       | D' 1                       |                 |            | FF0 4004 -        | FF000105     |
| C. texana                             | GPGC 02-          | India: Uttaranchal                 | Dıvakar s.n.               |                 | EF042906   | EF042915          | EF092105     |
| a                                     | 000637            | <b>0</b> 1 <b>1</b> <sup>111</sup> |                            | 1 1/2 / 2 / 2 / |            |                   | D.0000-00-   |
| Cetraria islandica                    | UPS               | Sweden: Västerbotten               | Wedin 15/5/05              | AY340486        | AFTT/995   | AY340539          | DQ923685     |

| Cetrariella delisei                        | UPS                | Sweden: Västerbotten                        | Wedin 6351            | DQ923628 | DQ980005 | DQ923657 |          |
|--------------------------------------------|--------------------|---------------------------------------------|-----------------------|----------|----------|----------|----------|
| C. delisei                                 | UPS                | Sweden: Västerbotten                        | Wedin 7625            |          |          |          | DQ923686 |
| Cetrelia chicitae                          |                    | Philippines: Mt. Data<br>National Park, Mt. | Bawingan CL 0650      | DQ923629 | DQ980006 | DQ923658 |          |
| C alivetorum                               | LIDC               | Figure England: Devonshire                  | Wedin 6272            | DO023630 | DO080007 | DO023650 |          |
| C. Ulivelorum<br>Cetrelionsis rhytidocarpa | 015                | Philippines: Mt Ugo                         | Bawingan CL 0582      | DQ923030 | DQ980007 | DQ923660 |          |
| cerrenopsis mynuocurpu                     |                    | Tinongdan, Benguet                          | Dawingan CE 0302      | DQ725051 | DQ700000 | DQ725000 |          |
| Cladonia rangiferina                       | UPS                | Sweden: Jämtland                            | Wedin 6935            | AY300881 | AF458306 | AY300832 | DQ915595 |
| Cornicularia normoerica                    | UPS                | Norway: Sör-<br>Tröndelag                   | Hatten et al. 9302    | DQ923632 | DQ980009 | DQ923661 | DQ923687 |
| Evernia mesomorpha                         | UPS                | Sweden: Dalarna                             | Oldhammer s.n.        | DQ923633 | DQ980010 | DQ923662 |          |
| E. prunastri                               | UPS                | Sweden:<br>Ångermanland                     | Wiklund 2000          | DQ923634 | AF058033 | AF107562 |          |
| E. prunastri                               | F                  | Germany: Hesse                              | Schmitt s.n.          | - 67     |          |          | EF105428 |
| Everniastrum cirrhatum                     |                    | Costa Rica: San José                        | Trest 149             | AY611128 | AY611070 | AY607782 |          |
| E. nepalense                               | GPGC 02-<br>000924 | India: Uttaranchal                          | Divakar s.n.          | AY611129 | AY611071 | AY607783 | EF092106 |
| Everniopsis trulla                         | F                  | Perú: Ancash                                | Lumsbch et al. 19308c | EF108289 | EF105411 | EF108290 | EF105429 |
| Flavocetraria nivalis                      | BM                 | Sweden: Jämtland                            | Wedin 5052            | DQ923635 | DO980011 | DO923663 |          |
| F. nivalis                                 | UPS                | Sweden:Västerbotten                         | Wedin 15/9/03         | •        | •        | <b>C</b> | DQ923688 |
| Flavoparmelia caperata                     | MAF-Lich<br>6045   | Spain: Teruel                               | Crespo et al. s.n.    | AF351163 | AY581059 | AY578922 | EF092107 |
| F. soredians                               | MAF-Lich<br>10176  | Spain: Cáceres                              | Crespo et al. s.n.    | AY586586 | AY586562 | AY584835 | EF092108 |
| F. springtonensis                          | MAF-Lich           | Australia: Flinders<br>Ranges               | Elix 31200            | EF025483 | EF042907 | EF042916 | EF092109 |
| Flavopunctelia flaventior                  | MAF-Lich           | Spain: Teruel                               | Crespo et al. s.n.    | AF351164 | AY581060 | AY578923 | EF092110 |
| Hypogymnia physodes                        |                    |                                             |                       | AY756400 | AF058036 | AY756338 | AY756407 |
| H vittata                                  | UPS                | Sweden: Jämtland                            | Wedin 15/7/00         | DO900629 | DO980012 | DO900637 |          |
| H. vittata                                 | UPS                | Sweden: Västerbotten                        | Wedin 6814            |          |          |          | DO923689 |
| Hypotrachyna ciliata                       | MAF-Lich<br>10185  | China: Yunnan,<br>Jianchian County          | Crespo et al. s.n.    | AY785280 | AY785273 | AY785266 | EF092111 |
| H. revoluta                                | MAF-Lich<br>6047   | Spain: Vizcaya                              | Noya & Olea s.n.      | AF351166 | AY611075 | AY607787 | EF092112 |
| H. sinuosa                                 | MAF-Lich           | United Kingdom:<br>Scotland                 | Coppins s.n.          | AY611133 | AY611076 | AY607788 | EF092113 |
| Imshaugia aleurites                        | MAF-Lich           | Australia: Australian                       | Louwhoff et al.       | AY351167 | AY611126 | AY607840 | EF092114 |
| Karoowia saxeti                            | EBL                | Taiwan: Pigntung                            | Aproot 53350          | AY582299 | AY581063 | AY578926 | EF092115 |
| Lecanora hybocarpa                         | F                  | Spain: Guadalaiara                          | Lumbsch s.n           | EF105417 | EF105412 | EF105421 | EF105430 |
| L. paramerae                               | F                  | Spain: Guadalajara                          | Lumbsch s.n.          | EF105418 | EF105413 | EF105422 | EF105431 |
| L. sulphurea                               | F                  | Spain: Guadalajara                          | Lumbsch s.n.          | EF105419 | AF070030 | EF105423 | EF105432 |
| Letharia columbiana                        | UPS                | USA: California                             | Moberg 11301          | DQ923636 | DO980013 | DO923664 |          |
| Lethariella cashmeriana                    | UPS                | Tibet: Sichuan                              | Obermayer 8335        | DQ923637 | DQ980014 | DQ923665 | DQ923690 |
|                                            |                    |                                             |                       |          |          |          |          |

| 'Melanelia' disjuncta       | UPS               | Sweden: Lycksele<br>Lappmark         | Wedin 7143                   | DQ923638 | DQ980015 | DQ923666 | DQ923691 |
|-----------------------------|-------------------|--------------------------------------|------------------------------|----------|----------|----------|----------|
| M. hepatizon                | UPS               | Sweden: Västerbotten                 | Wedin 6821                   | DQ923639 |          | //       |          |
| M. hepatizon                | UPS               | Sweden: Västerbotten                 | Wedin 6812                   |          | DQ980016 | DQ923667 | DQ923692 |
| M. stygia                   | BM                | Sweden: Hälsingland                  | Wedin 5080                   | DQ923640 | AY611121 | AY607835 |          |
| M. stygia                   | UPS               | Sweden: Västerbotten                 | Wedin 7626                   |          | /        | ) ·      | DQ923693 |
| Melanelixia fuliginosa 1    | MAF-Lich<br>10223 | Spain: La Rioja                      | Blanco s.n.                  | AY611146 | AY611089 | AY607801 | EF092116 |
| M. fuliginosa 2             | MAF-Lich<br>10222 | Spain: Burgos                        | Crespo s.n.                  | AY611142 | AY611085 | AY607797 | EF092117 |
| M. glabra                   | MAF-Lich<br>10228 | Spain: Guadalajara                   | Crespo et al. s.n.           | AY611144 | AY611087 | AY607799 | EF092118 |
| M. subargentifera           | MAF-Lich<br>6049  | Spain: Teruel                        | Crespo et al. s.n.           | AY611155 | AY611098 | AY607810 | EF092119 |
| M. subaurifera              | MAF-Lich<br>10215 | United Kingdom:<br>England London    | Crespo s.n.                  | AY611156 | AY611095 | AY607811 | EF092120 |
| Melanohalea aff. exasperata | MAF-Lich          | Spain: Asturias                      | Blanco s.n.                  | AY611153 | AY611095 | AY607808 | EF092121 |
| M. elegantula               | MAF-Lich          | Spain: Madrid                        | Crespo & Divakar s.n.        | AY611135 | AY611078 | AY607790 | EF092122 |
| M. exasperata               | MAF-Lich          | Spain: Guadalajara                   | Blanco s.n.                  | AY611138 | AY611081 | AY607793 | EF092123 |
| M. exasperatula             | MAF-Lich          | Spain: Madrid                        | Crespo et al. s.n.           | AY611147 | AY611090 | AY607802 | EF092124 |
| M. olivacea                 | H                 | Finland: Puolanca                    | Vitikainen 16196             | AY611148 | AY611091 | AY607811 | EF092125 |
| M. subelegantula            | NDA               | USA: Oregon                          | Esslinger 16132              | AY611171 | AY611115 | AY607829 | EF092126 |
| Menegazzia confusa          | UPS               | Australia: Tasmania                  | Kantvilas 167/00             | DO923641 | DO980017 | DO923668 |          |
| M. myriotrema               | UPS               | Australia: Tasmania                  | Kantvilas 169/00             | DQ899303 | DO980018 | DQ899302 |          |
| M. terebrata                | UPS               | Sweden: Gästrikland                  | Wedin 4392                   | DQ899305 | DO980019 | DQ899304 | DO923694 |
| Myelochroa aurulenta        | MAF-Lich<br>13992 | India: North Sikkim                  | Divakar s.n.                 | EF025484 | DQ279530 | EF042917 | EF092127 |
| M. irrugans                 | MAF-Lich<br>10207 | China: Yunnan,<br>Jianchian County   | Crespo et al. s.n.           | AY611160 | AY611103 | AY607815 | EF092128 |
| M. metarevoluta             | MAF-Lich<br>10208 | China: Yunnan,<br>Jianchian County   | Crespo et al. s.n.           | AY611159 | AY611102 | AY607814 | EF092129 |
| Namakwa exornata            | MAF-Lich<br>14266 | South Africa: Cape<br>Region         | Crespo et al. s.n.           | EF025485 | EF042908 | EF108318 | EF092130 |
| Nesolechia oxyspora         | UPS               | Norway: Troms                        | Fröberg 10/08/03             | DQ923642 | DQ980020 | DQ923669 |          |
| Oropogon sperlingii         | F                 | Perú: Ancash                         | Lumbsch et al. 19326a        |          | EF105414 | EF105424 | EF105433 |
| Omphalodiella patagonica    | UPS               | Argentina: Río Negro                 | Lumbsch et al. 11036a        | DQ923643 | DQ980021 | DQ923670 |          |
| Pannoparmelia angustata     | MAF-Lich<br>7321  | Australia: Molonglo<br>Gorge Reserve | Elix 42640                   | AF351170 | AY785272 | AY785265 | EF092131 |
| Parmelaria subthmonsonii    | LWG 20-<br>77151  | India: Sikkim                        | Chatterjee & Divakar<br>s.n. | AY586588 | AY586564 | AY584836 |          |
| Parmelia discordans         | MAF-Lich<br>10232 | United Kingdom:<br>Scotland          | Hawksworth s.n.              | DQ287841 | AY583212 | EF042918 | EF092132 |
| P. saxatilis                | UPS               | Sweden: Västerbotten                 | Wedin 7091                   | AF351172 | AF058037 | AY300849 | DQ923695 |

| P. serrana               | MAF-Lich<br>9756  | Spain: Madrid                              | Crespo & Divakar s.n. | AY582319 | AY295109 | AY578948 | EF092133 |
|--------------------------|-------------------|--------------------------------------------|-----------------------|----------|----------|----------|----------|
| P. squarrosa             | MAF-Lich<br>7288  | USA: Virginia                              | Flenniken 4737        | AY611162 | AY036975 | AY607815 | EF092134 |
| P. sulcata               | MAF-Lich<br>6054  | United Kingdom:<br>England Norfolk         | Lambley s.n.          | AY582320 | AY581083 | AY578949 | EF092135 |
| Parmelina quercina       | MAF-Lich<br>6057  | Spain: Madrid                              | Crespo s.n.           | AY611164 | AY611105 | AY607818 | EF092136 |
| P. tiliacea              | MAF-Lich<br>6056  | Spain: Teruel                              | Crespo s.n.           | AY351173 | AY581084 | AY578950 | EF092137 |
| Parmelinella wallichiana | LWG-<br>2077171   | India: Sikkim                              | Chatterjee & Divakar  | AY611165 | AY611106 | AY607819 |          |
| Parmelinopsis horrescens | MAF-Lich<br>9913  | Spain: La Coruña                           | Carballal s.n.        | AY582321 | AY581085 | AY578951 | EF092138 |
| P. minarum               | MAF-Lich<br>7639  | Spain: Cádiz                               | Crespo et al. s.n.    | AY582322 | AY581086 | AY578952 | EF092139 |
| P. neodamaziana          | MAF-Lich<br>10182 | Australia: Motion<br>National Park         | Louwhoff et al. s.n.  | AY611166 | AY611107 | AY607820 | EF092140 |
| P. subfatiscens          | MAF-Lich<br>6878  | Australia: Motion<br>National Park         | Louwhoff et al. s.n.  | AF351174 | AY611108 | AY607821 | EF092141 |
| Parmeliopsis ambigua     |                   |                                            |                       | AF351175 | AF410829 | AY607822 |          |
| P. hyperopta             | MAF-Lich<br>10181 | Spain: Madrid                              | Blanco s.n.           | AY611167 | AY611109 | AY607823 | EF092142 |
| Parmotrema cetratum      | MVM               | Uruguay: Maldonado                         | Osorio 9424           | AY586598 | AY586576 | AY584847 | EF092143 |
| P. haitiense             | MAF-Lich<br>7657  | Australia: Australian<br>Capital Territory | Lowhoff et al. s.n.   | AY582295 | AY581055 | AY578918 | EF092144 |
| P. perforatum            |                   | USA: North Carolina                        | Cole 7983             | AY586591 | AY586568 | AY584840 | EF092145 |
| P. perlatum              | MAF-Lich<br>6965  | Portugal: Sintra                           | Crespo et al. s.n.    | AY586580 | AY586566 | AY584838 | EF092146 |
| Platismatia glauca       |                   |                                            |                       | AY756404 | AF058035 | AY756342 | AY756410 |
| P. norvegica             | UPS               | Sweden: Jämtland                           | Tibell 22720          | DQ923644 | DQ980022 | DQ923671 | DQ923696 |
| Pleurosticta acetabulum  | MAF-Lich<br>9914  | Spain: Guadalajara                         | Crespo et al. s.n.    | AY582323 | AY581087 | AY578953 | EF092147 |
| Protoparmelia badia      | F                 | Spain: Guadalajara                         | Lumbsch s.n.          | EF105420 | AF070023 | EF105425 | EF105434 |
| Protousnea magellanica   | UPS               | Argentina: Nequen                          | Messuti 14.XI.01      | DQ985194 | DQ985192 | DQ985193 | DQ985195 |
| Pseudephebe pubescens    | MAF-Lich<br>6774  | Spain: Zamora                              | Crespo s.n.           | AF351180 | AY611125 | AY607839 | EF092148 |
| Pseudevernia furfuracea  | F                 | Germany: Hesse                             | Schmitt s.n.          | AY611169 | AY611112 | AY607826 | EF105435 |
| Psiloparmelia denotata   | F                 | Perú: Ancash                               | Lumbsch et al. 19302g |          | EF105415 | EF105426 | EF105436 |
| P. sp.                   | F                 | Perú: Ancash                               | Lumbsch et al. 19322h |          | EF105416 | EF105427 | EF105437 |
| Punctelia borreri        | MAF-Lich<br>9919  | Portugal: Castello<br>Vide                 | Crespo et al. s.n.    | AY582324 | AY581088 | AY578954 | EF092149 |
| P. pseudocoralloidea     | MAF-Lich<br>6922  | Australia: New South<br>Wales              | Louwhoff et al. s.n.  | AY586595 | AY586572 | AY584843 | EF092150 |
| P. rudecta               | MAF-Lich<br>10162 | USA: New York                              | Molina s.n.           | AY586597 | AY586574 | AY584845 | EF092151 |

| Relicina subnigra            | MAF-Lich          | Australia: Molonglo              | Louwhoff et al.            | AY785281 | AY785274 | AY785267 | EF092152 |
|------------------------------|-------------------|----------------------------------|----------------------------|----------|----------|----------|----------|
|                              | 10184             | Gorge Reserve                    |                            |          |          |          |          |
| Sulcaria sulcata             | UPS               | India: Uttar Pradesh             | Tibell 22073               | DQ923645 | DQ980023 | DQ923672 |          |
| S. virens                    | UPS               | India: Uttaranchal               | Tibell 23383               | DQ923646 | DQ980024 | DQ923673 |          |
| Tuckermannopsis chlorophylla | UPS               | Sweden: Västerbotten             | Wedin 6995                 | DQ923647 | DQ980025 | DQ923674 | DQ923697 |
| Usnea antarctica             | F                 | Antarctica: Livingston<br>Island | Lumbsch 19029c             | New      | New      | New      | New      |
| U. florida                   | UPS               | Sweden: Uppland                  | Mattsson 4001.             |          | AJ457147 | New      | New      |
| U. trachycarpa               | F                 | Argentina, Tierra de<br>Fuego    | Lumbsch 19001a             | New      |          | New      |          |
| U. trachycarpa               | F                 | Argentina, Tierra de<br>Fuego    | Wirtz & Messuti PA-<br>12b |          | New      |          | New      |
| Vulpicida juniperina         | UPS               | Sweden: Uppland                  | Mattsson 4013              | AY340535 | AF058038 | AY340577 |          |
| V. pinastri                  | UPS               | Sweden: Uppland                  | Mattsson 4004              | DQ923648 | AF058039 | DQ923675 |          |
| V. pinastri                  | UPS               | Sweden: Västerbotten             | Wedin 7620                 |          |          |          | DQ923698 |
| Xanthomaculina hottentota    | MAF-Lich<br>14267 | South Africa: Cape<br>Region     | Crespo et al. s.n.         | EF025486 | EF042909 | EF042919 | EF092153 |
| Xanthoparmelia brachinaensis | MAF-Lich<br>10669 | Australia: Flinders<br>Ranges    | Elix 30651                 | -        | AY581062 | AY578925 | EF092154 |
| X. conspersa                 | MAF-Lich<br>6793  | Spain: Zamora                    | Blanco & Crespo s.n.       | AF351186 | AY581096 | AY578962 | EF092155 |
| X. mougeotii                 | MAF-Lich<br>9916  | Spain: La Rioja                  | Blanco & Crespo s.n.       | AY582336 | AY581100 | AY578967 | EF092156 |
| X. semiviridis               | MAF-Lich<br>6876  | Australia: New South<br>Wales    | Elix 30294                 | AF351158 | AY581058 | AY578921 | EF092157 |
|                              |                   |                                  |                            |          |          |          |          |

MAF-Lich Australia: New South Elix 30294 AF351158 6876 Wales

41



